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Considered has been the phenomenon of hydraulic jump formed as a result of circular jet impingement
on the horizontal surface. The horizontal spreading of liquid is induced mainly by action of inertia forces.
In the case of supercritical conditions of film flow the phenomenon of hydraulic jump may appear. Pos-
tulated model includes in the analysis dissipation effects present in the flow which lead to formation of
the hydraulic jump. The model is derived from the analysis of Bernoulli equation. Some preliminary anal-
ysis on the formation of the type I and type II hydraulic jump, i.e., featuring formation of one or two
eddies, has also been given. Presented model was compared with available database of experimental
results. Satisfactory consistency has been achieved.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Jets impinging on horizontal surfaces can be used to cleanse
metal surfaces, induce atomisation and effect high heat and mass
transfer in the industry. Spreading of a film formed in such a
way may experience a sudden change of the film thickness,
i.e., the hydraulic jump, accompanied by a significant loss of en-
ergy and production of turbulence. During such change the flow
changes from supercritical condition to subcritical condition with
a sudden change of the liquid height and a decrease in velocity
of liquid. In some cases also entrainment of air is present as a
result of effects of turbulent mixing and buoyancy, Waniewski
et al. [16]. Precise knowledge of liquid film height before and
after the jump enables determination of accurate rates of heat
which can be removed from surfaces. It is apparent that the heat
transfer is much more efficient in the case of thin films or highly
turbulent thick films and our efforts should aim at such a config-
uration of nozzles cooling the surface which would eliminate the
issue of increased film thickness for laminar or low turbulence
cases of film.

The formation of the thin layer and the circular jump was
first noticed and described by Lord Rayleigh [11] who considered
inviscid flow along a channel of constant breadth. The speed
ahead of the hydraulic jump was assumed uniform. Watson
[17] extended that theory slightly by assumption of the flow
in the thin layer being radial and strongly influenced by viscos-
ity, whereas the principles of momentum and continuity at the
jump location were similar as in the theory due to Rayleigh.
Such theory for a long time served as a benchmark for testing
ll rights reserved.
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other models of hydraulic jump, Chaudhury [4]. A very interest-
ing research into the understanding of the hydraulic jump was
carried out by Ishigai et al. [9] who studied the problem both
theoretically and experimentally. He classified the hydraulic
jump in relation to the Froude number before the jump as
smooth (Fr < 2), S-shaped (2 < Fr < 7), round and narrow
(7 < Fr < 15) and unstable entraining air (Fr > 15). It has also been
noticed that the mean location of hydraulic jump could be calcu-
lated from the principle of momentum conservation. Craik et al.
[5] experimentally detected the regions of ‘‘reversed flow” just
after the occurrence of the hydraulic jump. Such reversed flow
region was also detected by Nakoryakov et al. [14]. The eddy
changed its dimensions with regard to the flow conditions,
namely the upstream Froude and Reynolds numbers. The dimen-
sion of the eddy shortened as the outer depth of the film in-
creased. In the study by Craik et al. [5] the equations of
motion were integrated across the thin liquid layer to solve for
the velocity and height of the liquid film. Bowles and Smith
[2] carried out numerical study in which the conclusion was
made that hydraulic jumps are governed by a free interaction
predominantly between surface tension and viscosity upstream
and then further downstream between gravitational pressure
gradient and viscosity. The latter was claimed vital in controlling
these jumps. Liu and Lienhard [10] concluded that the radial po-
sition of the jump, which was elaborated by various researchers
has not been confirmed to a satisfactory extent with experimen-
tal data available to date. On the basis of momentum balance
the classical theory by Raleigh, reproduced by Massey [12], ar-
rived at a relation for the change of the film depth before and
after the jump in the form:

h2=h1 ¼ 0:5 �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Fr2
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Nomenclature

d nozzle diameter (m)
Fr = ud/(gd)0.5 Froude number
G acceleration due to gravity (m/s2)
h film thickness (m)
H head losses (m)
k parameter
p pressure (Pa)
P parameter modelling unknown eddy size
r radial coordinate
R mean radius of curvature of the free surface (m)
Res = udd/m Reynolds number
Q volumetric flow rate (m3/s)
U velocity in film (m/s)
ud nozzle velocity (m/s)
We = d(qg/r)0.5 Weber number

m kinematic viscosity (m2/s)
q liquid density (kg/m3)
r surface tension (N/m)
x eddy vorticity (1/s)

Subscripts
1 inlet
2 outlet
d nozzle
h location of hydraulic jump
ed eddy
exp expansion
loss losses
r radial
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That study was one of the first to track theoretically the occurrence
of one and two eddies formed after the hydraulic jump. Therefore,
two types of eddies were distinguished and the ‘‘traditional” one
was named ‘‘type I” and ‘‘the roller”, the another eddy which ap-
peared just beneath the surface – ‘‘type II”, respectively (see
Fig. 1). Up to date none of the studies were able to provide explana-
tion for the formation of the roller eddy, Thomas et al. [15]. Numer-
ical studies of Yokoi and Xiao [18] showed that transition from type
I to type II is associated with an increase in pressure beneath the
surface in the region after the hydraulic jump. They found that there
is an immediate increase of pressure after the jump due to interac-
tion between the surface tension and the main flow. This increase in
pressure needs to balance the surface tension and the driving flow
to produce steady jump. They concluded also that the type II jump
tends to occur when the depth of the film after the jump is greater
than 0.5 mm, whereas the type I develops in cases of smaller
depths. The results of their numerical simulations also show that
the radius of the jump decreases with increasing kinematic viscos-
ity of liquid, which is consistent with experimental evidence, see for
example Bohr et al. [1]. Modelling of dissipation effects was,
amongst the others, introduced by Hewakandamby and Zimmer-
man [8]. The energy dissipation was attributed to small eddies. Yo-
koi and Xiao [19] in their numerical examination of the hydraulic
jump managed to reproduce both types of jump. The transition be-
tween the two was due to pressure increase beneath the jump. The
roller is formed as a result of a proper pressure pattern.

The phenomenon of hydraulic jump is a very important issue in
the case when heat transfer on a body, where the liquid jet im-
pinges, is considered. Beyond the hydraulic jump the intensity of
heat transfer abruptly deteriorates. Therefore knowledge on such
phenomenon and ability to predict its location is of paramount
importance in the design of surface cooling processes. The hydrau-
lic jump is formed at a location where the balance between forces
Fig. 1. Schematic of hydraulic jump.
resulting from momentum change in thinner and thicker liquid
layers and forces stemming from hydrostatic thrust of thicker li-
quid layer and surface tension force is obeyed. Presented below
is a simple model enabling determination of liquid film thickness
before and after hydraulic jump as well as its radial position. The
model is derived from the analysis of the Bernoulli equation rather
than of the momentum equation. The results obtained using the
model are based on the existence of a single or two eddies formed
at the location of hydraulic jump.

2. Model of hydraulic jump

Let us consider a liquid jet impinging on a horizontal plane. The
spreading of liquid takes place by means of action of inertia forces.
As mentioned earlier the hydraulic jump occurs in places where
the flow suddenly changes from supercritical one (Froude number,
Fr > 1) into subcritical one (Fr < 1).

According to existing theories, the critical flow conditions, in
the case of thin films, correspond to a value of Froude number of
one, i.e., when the mean velocity of liquid and propagation velocity
of disturbances on a flat liquid surface are equal. The hydraulic
jump seems to be analogical to the phenomenon of a shock wave
in gas flow, when the flow conditions change from supercritical
(Mach number, Ma > 1) into subcritical conditions (Ma < 1). In
the subsequent considerations a case will be considered where
the value of Froude number at inlet will exceed unity, so that
favourable conditions for the occurrence of hydraulic jump will
be present.

The postulated model of hydraulic jump is based on the analysis
of Bernoulli energy equation for a viscous liquid, which includes
energy losses present due to a sudden flow expansion beyond
the jump as well as the presence of one or two eddies following
the change of film thickness. The Bernoulli equation for an aver-
aged streamline for a real fluid, as in Fig. 1, yields:

p1

qg
þ H1 þ

u2
1

2g
¼ p2

qg
þ H2 þ

u2
2

2g
þ Dhloss ð2Þ

Symbols appearing in Eq. (2) have been explained in Fig. 1. In the
considered case we are dealing with a free surface flow and there-
fore p1 = p2, H1 = h1/2 and H2 = h2/2. Incorporating the latter we ob-
tain from (2):

h1

2
þ u2

1

2g
¼ h2

2
þ u2

2

2g
þ Dhloss ð3Þ

On the other hand the continuity equation for radially spreading
outwards film yields:
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Q ¼ pd2

4
ud ¼ 2pr1u1h1 ¼ 2pr2u2h2 ð4Þ

Additionally examined were losses due to friction with the wall at
the location of hydraulic jump, but they proved to be an order of
magnitude lower than the ones modelled in the study.

Eqs. (3) and (4) describe the phenomenon of hydraulic jump.
Losses of mechanical energy, Dhexp, present during the hydraulic
jump, are modelled in a similar way as pressure losses in a channel
where sudden change of cross-section of the channel takes place
and therefore are named the expansion losses. Such losses can be
estimated from formulas presented in numerous textbooks on fluid
mechanics, where such topics are considered, for example, Douglas
et al. [6]:

Dhexp ¼ ðu1 � u2Þ2=2g ð5Þ
Moreover, as stems from examination of experimental data as well
as numerical calculations, beyond the location where the sudden
change of the film thickness there is formed a strong one eddy or
two eddies, schematically presented in Figs. 1 and 2, which contrib-
ute to further energy losses. The sketch showing the geometry of a
model for the case of one eddy is presented in Fig. 2a, whereas the
case of two eddies is considered in Fig. 2b. Head losses caused by
rotation of liquid between two locations within the eddy, namely
r1 and r2 are:

Dhed ¼
p2

qg
� p1

qg
¼ x2r2

2

2g
� x2r2

1

2g
ð6Þ

In relation (6) x denotes the eddy vorticity. Assuming r1 = 0 and
averaging the pressure change in the limits of the mean radius of
the eddy curvature we obtain:

Dhed ¼
x2

2gh2

Z R=2

0
r2dr ð7Þ

In relation (8) R stands for the mean eddy radius. That is also related
to the curvature of the free surface at the location of the jump, as
seen from Fig. 1. In the model, the eddy occupies half of the film
height after the jump and divides it into four imaginary layers, ones
without the eddy on top and bottom of the film after the jump and
the other two layers occupied by the eddy with the diameter R. In
order to complete our considerations of head losses due to presence
of eddies we need to determine the vorticity resulting from the
presence of the single eddy. The rotation of the eddy with respect
to its centroid can be approximated using the velocity difference
acting on two sides of the eddy. In such a case the vorticity reads:

x ¼ ðu1 � u2Þ=R ð8Þ
Fig. 2. Schematic geometry of a model of a jump featuring: (a) one eddy, (b) two
eddies.
Generally the radius of eddy is a function of the film height and
parameter: P which models the unknown eddy size, and can be ex-
pressed as R � h2/P. Parameter P requires more detailed experimen-
tal evidence to be examined. Surveyed literature did not show any
data related to that topic. Therefore in the present study it has been
studied as a parameter. Substitution of (8) into (7) returns the head
loss due to the presence of the eddy:

Dhed ¼ ðu1 � u2Þ2=ð2g 8PÞ ð9Þ

Finally, the total losses due to the flow expansion and the presence
of one eddy yield:

Dhloss ¼ Dhexp þ Dhed ¼ 1þ 1
8P

� �
ðu1 � u2Þ2

2g
¼ k
ðu1 � u2Þ2

2g
ð10Þ

In the paper were assumed two values of parameter P, namely
P1 = 4 and P2 = 8, corresponding in such a way to the division of
the film after the jump into respective layers (see Fig. 2). Such a
division corresponds also to one or two eddies, respectively. In case
of two eddies it is easy to show, on the basis of condition of same
head losses for a single and two eddies that P2 = 2P1. In relation
(11) k = (1 + 1/(8P)). Introducing (10) and (4) into (3) we can obtain
a relation in which the film thickness before and after the hydraulic
jump are related through the definition of the Froude number:

Fr1 ¼
u1ffiffiffiffiffiffiffiffi
gh1

p ¼ h2=h1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2=h1 þ 1Þ � ðh2=h1 � 1Þk

p ð11Þ

Relation (11), when losses due to eddy are not considered, i.e., k = 1
reduces to:

h2=h1 ¼
ffiffiffi
2
p

u1=
ffiffiffiffiffiffiffiffi
gh1

q
¼

ffiffiffi
2
p

Fr1 ð12Þ

Such relation should be compared with the traditional relation for
the change of film depth (1). Relations (1) and (12) give similar re-
sults for large values of Froude number (discrepancy less than 2%).
At values of Fr < 10 discrepancies are more pronounced and if nec-
essary relation (1) can be used. In order to find a specific relation for
localisation of the hydraulic jump we require additional informa-
tion about relation of film height before and after the jump. To do
that let us compare difference in hydrostatic pressure due to
hydraulic jump with the pressure difference resulting from surface
tension, which sustains that pressure difference:

ðh2 � h1Þqg ¼ r=R ð13Þ

In (13) R denotes the jump curvature radius. Such radius can be esti-
mated and examination of literature shows that it amounts to more
or less of half of the film thickness beyond the jump. Hence

ðh2 � h1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=ðqgÞ

p
ð14Þ

In the case of laminar film flow the film thickness before the jump
can be estimated from the distance from stagnation point, Mikiele-
wicz and Mikielewicz [13]. In the case of developing flow, assuming
inviscid flow in films and (4), as well as that nozzle velocity is equal
to undisturbed velocity in film ud = u1 we obtain:

h1 ¼ d2
=ð8rÞ ð15Þ

A good approximation of film thickness is r = d/2 in (15), Mikiele-
wicz and Mikielewicz [13], which leads to:

h1 ¼ d=4 ¼ const ð16Þ

A more general relation for film thickness before the jump stems
from account of viscous and inertia forces in momentum equation,
Mikielewicz and Mikielewicz [13]:

h1 ¼
10Qr2m
3pu2

d

 !0:2

¼ 5d3r2

6Red

 !0:2

ð17Þ
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Fr1.

20 J. Mikielewicz, D. Mikielewicz / International Journal of Heat and Mass Transfer 52 (2009) 17–21
where Red = udd/m. Utilising (14) we can derive the relation for Fro-
ude number:

Fr1 ¼
u1ffiffiffiffiffiffiffiffi
gh1

p ¼
1þ 8

ffiffi
2
p

We
rh
d

2
ffiffiffi
2
p

rh
d

� �0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 8

ffiffi
2
p

We
rh
d ð1� kÞ

q ð18Þ

where Frd ¼ ud=
ffiffiffiffiffiffi
gd

p
; We ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffi
qg=r

p
. Making use of (16) leads to

relation describing the location of hydraulic jump in the form:

rh

d
¼

Frd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4

ffiffiffi
2
p
ð1� kÞ=We

q
4
ffiffiffi
2
p

=Weþ 1
ð19Þ

On the other hand implementation of (18) leads to the following
relation for hydraulic jump:

1
8

Frd
5
6

� ��0:3 rh

d

� ��1:6
Re0:3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ a

ð1� kÞ
ðrh=dÞ0:4

s
� 1þ rh

d

� ��0:4
	 


¼ 0 ð20Þ

where a ¼
ffiffiffi
2
p

=Weð6Re=5Þ0:2.

3. Calculations

Considered has been supercritical flow of liquid film (Fr > 1). In
calculations a value of the parameter P, describing the eddy size,
was chosen to be P = 4 and 8, influencing in such a way value of
h2/h1. Such a choice of values of parameter P were corresponding
to the presence of 1 or 2 eddies. In Fig. 3 presented are experimen-
tal data from literature due to Craik et al. [5], Ishigai et al. [9], Liu
and Lienhard [10], Bykuć and Barnik [3], Gumkowski [7] compared
with the model predictions. Good consistency has been achieved.
Most of the experimental data collected up to date was gathered
for the inlet Froude number less then 20. Only some of data due
to Liu and Lienhard [10] have been established for higher values
of Froude number. Relation (1) proves to be a good model for small
values of Froude number, however that relation fails to reflect the
experimental data for higher values of the Froude number. The
proposed in the present work model (11) proves to be of the same
quality as relation (1) in the case of small values of Froude number.
In case of large Froude numbers the model is capable of predicting
a non-linear behaviour of experimental data, contrary to Eq. (1). In
Fig. 3 the results of calculations performed using Eq. (11) have
been presented where values of parameter P were selected to be,
respectively, P1 = 4, one eddy, and P2 = 8 (two eddies). It must be
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Fig. 3. Froude number before the jump in function of film thickness ratio h2/h1.
admitted that the calculations are very fragile to a value of param-
eter P. Anyway, the way in which parameter P is considered in the
present work has some physical meaning, as it is the number of re-
gions into which the film depth is divided after the jump. In case of
a single eddy these are four layers and in case of two eddies-eight
layers (see Fig. 2a and b). The type II jump, i.e., when two eddies
are present, occurs mostly at higher values of Froude which corre-
spond to thicker films. A good quality of results showing the jump
location compared against experimental data can be seen in Fig. 4.
In this figure there are contained envelopes corresponding to
respective models of film thickness distribution for different values
of parameter P. Again it is apparent that the simple models of film
thickness distribution (15)–(17) are sufficient to be combined with
the model of hydraulic jump (11) to enable calculation of the loca-
tion of hydraulic jump. Most promising results are obtained with
the model (15), however even in that case some further refinement
would be necessary.

4. Conclusions

In the paper presented has been a simple model of circular
hydraulic jump. The model is based on the solution of Bernoulli
equation for a viscous fluid flow, which incorporates the dissipa-
tion losses due to change of film thickness as well as the presence
of eddies following the jump, instead of the momentum equation.
Film thickness before and after the jump is a local quantity and de-
pends merely on Reynolds and Weber numbers. Proposed model
features a parameter describing the size of the eddy, the parameter
P. The model is very sensitive to selection of a value of that param-
eter. It results from the presented analysis that value of parameter
P1 = 4 corresponds to the presence of a single eddy, whereas P2 = 8
corresponds to two eddies. Calculations performed for two cases
show an envelope where all considered experimental data can be
found. Consistency between model predictions and experimental
data seems satisfactory. The type II jump, occurs mostly at higher
values of Froude which correspond to thicker films.
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